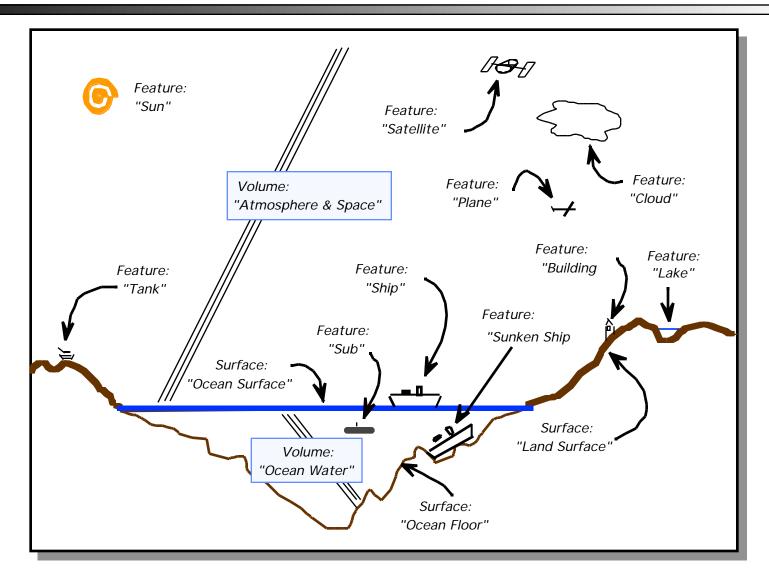
Why Multi-Resolution Environments May Be the Wrong Solution:


Are We Really Asking the Right Question(s)?

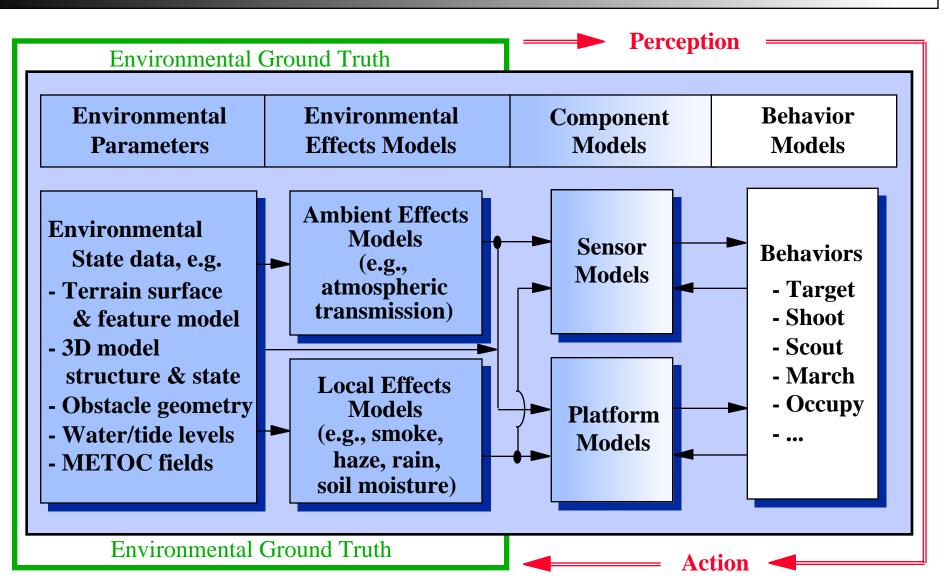
Dr. Paul A. Birkel

12 August, 1996

MITRE

The Natural Environment

What is the Simulated Environment?

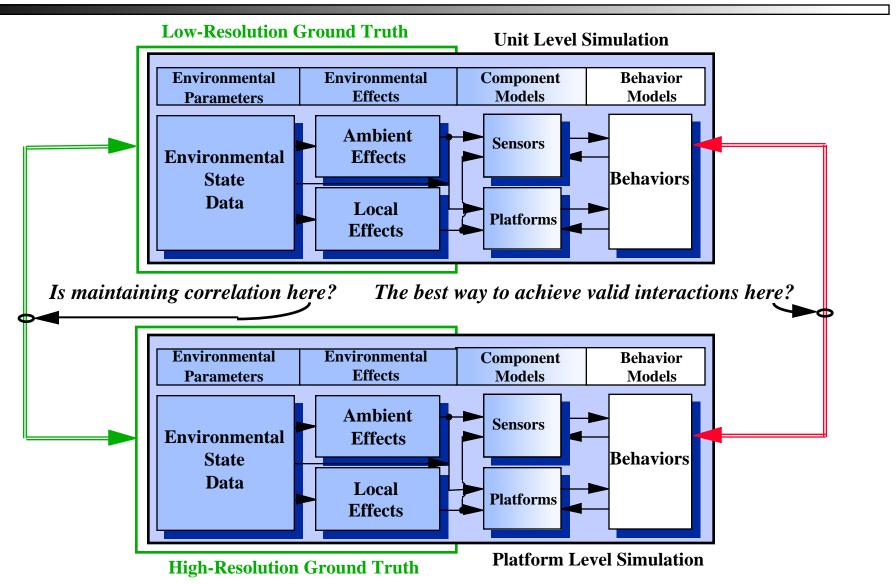

- ☐ The representation of the Natural Environment which provides the "place" where the Simulated Forces operate
 - Includes Littoral, Land, Sea, Air and Space
- ☐ Modeling of the SE / SF can be roughly divided into:
 - Environmental Parameters (environmental state data), e.g.
 - Terrain surface model

- Terrain feature models
- 3D Model structures & states
- Obstacle geometries

Water / tide levels

- METOC fields
- Environmental Effects Models
 - Global (ambient)
 - Local
- Component Models (sensors / platforms)
 - Environmental effects coupled to basic entity component infrastructure (e.g., tank vision block model, hull motion model, ...)
 - The mechanism by which the SF "perceives" the environment
- Behavior Models
 - Target, shoot, scout, march, occupy, ...

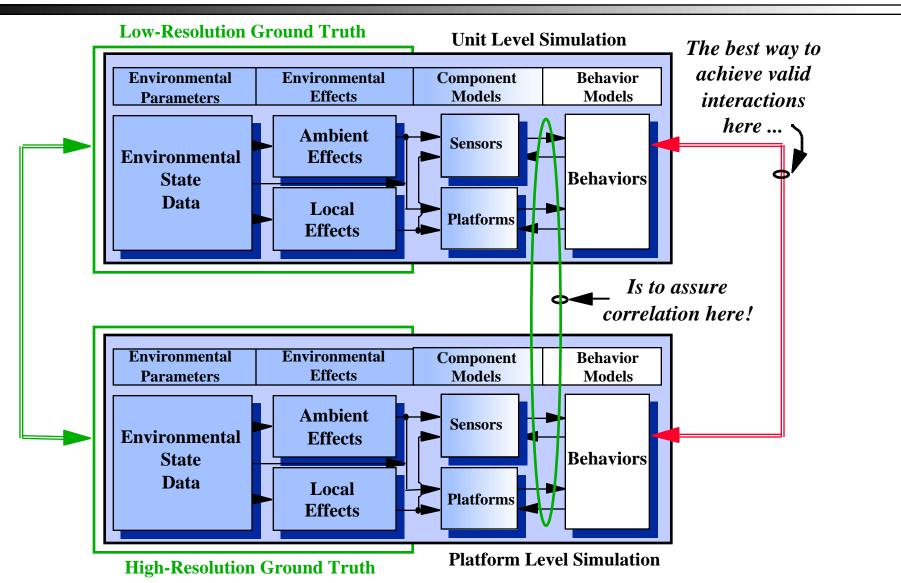
Data Flows From SE to SF



Assumptions

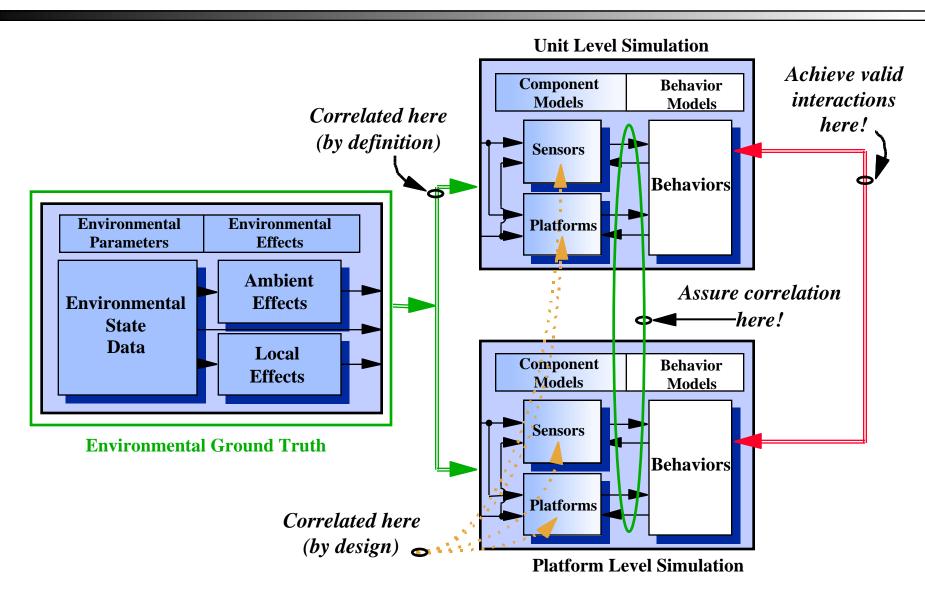
☐ Focus: (without loss of generality)

- Ground or near-ground interactions
 - Army / Marine Corps focus
- Ignore MITL (man-in-the-loop) simulation
- Simplified mission space
 - Manuever to position assets
 - Projection of fire power
- Simplified behavioral repetoire
 - Move, sense/target/shoot, ...
- Ignore static vs. dynamic environmental data distinctions
- ☐ Issue: Require valid interactions among Simulated Forces with varied resolutions, e.g.
 - Platform level (tanks, planes, ships)
 - Unit level (platoon, company, battalion, ..., corps, army)


The Critical Question

The Critical Question Restated

- ☐ Is maintaining correlation between multi-resolution environmental ground truth databases --
 - the best way to achieve valid interactions among multi-resolution Simulated Forces?
 - Maybe, but not necessarily!
- ☐ Assuring consistent perceptions of environmental state also requires correlated Simulated Force component models
 - Interoperability can be destroyed by inconsistent component models despite identical environmental state models!


The Hypothesis

The Hypothesis Restated

- ☐ The best way to achieve valid interactions among multi-resolution Simulated Forces (wrt SE) --
 - is to assure perceptual correlation as mediated by Simulated Force component models
- ☐ This requires that:
 - Component model inputs be correlated
 - E.g. correlated multi-resolution environmental ground truth databases
 - Component models themselves be correlated
 - E.g. correlated multi-resolution component models
- □ Note that this formulation of the problem allows for the possibility of <u>completely dropping the requirement for multi-resolution environmental databases</u> as they are functionally isolated from behaviors by component models

A Proposal

The Right Questions

- 1. What constitutes "equivalent perceptions of the environment" in multi-resolution simulation?
- 2. What perceptual outputs are required from component models at different Simulated Force resolution levels?
- 3. What are the performance requirements for the multiresolution component models?
- 4. What environmental inputs do these multi-resolution component models require (and how often)?
- 5. When is pre-computing a low-resolution environment and maintaining its correlation with a dynamic high-resolution environment better than simply maintaining a single (high-resolution) environmental model?

What constitutes "equivalent perceptions of the environment" in multi-resolution simulation?

- ☐ A really tough question!
 - But gets at the heart of establishing interoperability in a multiresolution force simulation ...
- ☐ Strawman:

Cues that result in "equivalent / consistent behavior" in "same situation"

- S2/G2/J2 example: (sensing / intelligence)
 - Detection, classification, recognition, identification
- S3/G3/J3 example: (movement / manuever)
 - Go, Slow-go, No-go
 - Routes, corridors, avenues
- ☐ Driven by simulation objective(s); e.g. JTF training

What perceptual outputs are required from component models at different Simulated Force resolution levels?

☐ Platform level

- Support platform-to-platform interactions, e.g.
 - Sensor and weapon system emulation (e.g. LOS)
 - "Hull" motion emulation (e.g. placement and local conditions)
- (Perhaps) automatic selection of appropriate sensor parameters to optimize target detection given environmental conditions

□ Unit level

- Support "roll-up" (or emulation) of subordinate force inputs, e.g.
 - Composite sensor coverage (areal union, enhancements due to overlap)
 - Speed-made-good while maintaining formation
- ☐ Specific outputs and correlation across multi-resolution environments are not well understood

What are the performance requirements for the multiresolution component models?

- ☐ Unknown, but reasonable starting assumption:
 - Constant proportion of total computational effort may be spent in assessing environmental situation at any specific simulation resolution
- ☐ Probably desirable to spend proportionally <u>less</u> effort in low-resolution environments
- ☐ Certainly desirable to not spend more effort!
- ☐ Traditional approach is to allocate "remaining effort"
 - Usually ends up with very anemic component models (& environment)

What environmental inputs do these multi-resolution component models require (and how often)?

☐ Platform level

- Sensors: line of sight conditions (surface & obscurants)
 - Basically, once each behavior simulation unit time
- Platforms: local surface conditions
 - Typically every simulation "tick" (critical for physics; e.g. 1+/sec.)

☐ Unit level

- Statistical (and aggregated) models often used
 - Spatially: locations as center-of-mass, vegetation/obstacles as "typical"
 - Temporally: average unit-composition vehicle performance
- Performance no better than once per behavior simulation unit time
 - May be less based on crude "dead-reckoning"
- ☐ Specific inputs and correlation across multi-resolution environments are not well understood

When is pre-computing a low-resolution environment and maintaining its correlation with a dynamic high-resolution environment better than simply maintaining a single (high-resolution) environmental model?

- ☐ Depends on trade-off against running low-resolution component models on high-resolution environment
 - Caching of environmental abstractions may be key, e.g.
 - Military crests, relatively high terrain, key terrain
 - Mobility corridors, avenues, other OCOKA/IPB results
- ☐ Difficult to accomplish when environmental dynamics must be taken into account
- ☐ Trade-off space has never been explored
 - Traditional solutions for pure low-resolution environment not necessarily interoperable (ever) with high-resolution environment